

Easy Driver MPS-HSS600 Manual do Usuário

Manual do Usuário

Produto : MPS-HSS600

Idioma: Português

Publicado em: 06/2023

Sobre a OBR Automação

Com o objetivo de ampliar nosso portfólio e atender às demandas com excelência, a OBR Automação é uma empresa especializada na distribuição de produtos voltados para a automação de equipamentos. Contamos com uma equipe técnica altamente qualificada e um suporte dedicado, fornecendo produtos de alta qualidade, como motores de passo, easy-servos e comandos CNC. Nosso foco principal é impulsionar a produtividade e eficiência dos processos industriais.

Estamos comprometidos com a inovação contínua, buscando estar na vanguarda das últimas tendências tecnológicas. Com uma visão voltada para o futuro, estamos prontos para ser seu parceiro confiável, oferecendo expertise e conhecimento consolidado para atender às suas necessidades específicas. Na OBR Automação, acreditamos em construir relacionamentos de longo prazo com nossos clientes, fornecendo soluções personalizadas e confiáveis para a automação de seus equipamentos.

Ao escolher a OBR Automação como seu fornecedor, você terá acesso a uma ampla gama de produtos de alta qualidade, suporte técnico especializado e um compromisso inabalável com sua satisfação. Estamos prontos para enfrentar os desafios da automação industrial junto com você, proporcionando soluções inovadoras que impulsionarão o sucesso de seus projetos.

1.Introdução	5
2. Características	6
3. Características elétricas, de ambiente, e mecânicas	7
3.1 Características Elétricas	7
3.2 Parâmetros de utilização no ambiente	7
3.3 Desenhos técnicos e dimensões mecânicas	8
4. Ligação física	9
4.1 Ligação NPN	9
4.2 Ligação PNP	10
4.3 Ligação Diferencial	11
4.4 Ligação das saídas	12
5. Cabos de encoder e Especificações	13
6. Interface do driver	13
6.1 Entrada de alimentação e das fases do motor	13
6.2 Entrada do Encoder	14
6.3 Pinos da Porta de Controle	14
8. Indicação de status e alarme	15
9. Seleção dos DIPS	16
10. Aplicação	17
10.1 Perfil de movimento	17
10.2 Controle de malha fechada	18
11. Instalação de software e configurações de parâmetros	19
12. Tabela de configuração de parâmetros	27

1.Introdução

O Manual Técnico do Driver MPS-HSS600 para Easy Servo é um guia completo que explora as funcionalidades avançadas deste driver de automação industrial. Projetado para motores Easy Servo, o MPS-HSS600 oferece controle preciso e eficiente de movimento, graças à sua tecnologia de malha fechada. Com suporte ao protocolo Modbus RTU 232, os usuários podem configurar facilmente os parâmetros de ganho e personalizar o desempenho do motor. O manual abrange a instalação correta, configuração de parâmetros, operação adequada e solução de problemas, fornecendo todas as informações necessárias para maximizar a eficiência do motor Easy Servo com o driver MPS-HSS600.

Aproveite este manual técnico como um recurso indispensável para obter um desempenho otimizado do motor Easy Servo em suas aplicações industriais. Com o driver MPS-HSS600, você terá controle preciso e eficiente de movimento. Siga as instruções fornecidas no manual para uma instalação correta, configuração adequada e operação sem problemas do driver MPS-HSS600.

2. Características

Características Gerais	Descrição
Processador inteligente	Chip DSP dedicado de 32 bits
Modo de trabalho versátil	Controle vetorial de malha fechada e PID convencional em malha aberta.
Controle de torque apurado	Adaptação a várias condições de carga mecânica através de um PID apurado de controle vetorial da corrente.
Ampla faixa de frequência	Entrada de pulso simples e duplo(diferencial) até 200 kHz
Resolução de trabalho	Suporta 15 subdivisões de resolução e pode ser configurado com um valor personalizado via software.
Sistema de alarme diversificado	Proteções contra sobrecorrente, sobretensão e tolerância da posição
Protocolo Modbus RTU em RS232	Possui um software para realizar a parametrização e dar comandos de posição e movimentação para o motor.
Saídas sinalizadoras	Possui duas saídas optoacopladas, uma para sinalização de alarme (ALM) e outra para término de posição ou liberação de freio(PEND).

3. Características elétricas, de ambiente, e mecânicas

Alimentação	24 ~ 50 VDC
Corrente de saída	Pico de 6A (varia conforme a carga)
Corrente de entrada de sinal	$7 \sim 20 mA$
Frequência	$0 \sim 200 \text{kHz}$
Motores compatíveis	2N.m e 3N.m
Resolução do encoder	1000 PPR
Isolação dielétrica	>= 500 MΩ

3.2 Parâmetros de utilização no ambiente

Método de resfriamento	Refrigeração por dissipador de alumínio		
Ambientes de uso	Grau de proteção IP20	Evitar pó, óleo e etc.	
	Temperatura de trabalho	-10°C ~ 50°C	
	Umidade 40% ~ 90%		
	Vibração	5,9 m/s² Máx.	
Temperatura de estocagem	-20°C ~ 65°C		
Peso	560g		
Cabos	AWG18 até 20m		

3.3 Desenhos técnicos e dimensões mecânicas

4. Ligação física

4.1 Ligação NPN

Imagem 2 - Diagrama de ligação com sinal NPN

4.2 Ligação PNP

Imagem 3 - Diagrama de ligação com sinal PNP

4.3 Ligação Diferencial

Imagem 3 - Diagrama de ligação com sinal diferencial

4.4 Ligação das saídas

Imagem 4 - ligação das saídas

5. Cabos de encoder e Especificações

Especificações	Descrição
Comprimento do Cabo	Padrão 12m (podendo ser personalizado conforme a necessidade do cliente) e máximo de 25m.
Cabo e Conector	Cabo com malha e conector DB15 blindado.
Vias	6 vias, EA+, EA-, EB+, EB-, 5V e 0V
Canais	2 canais, A e B
Resolução	1000 PPR (4000 linhas se somar as fases)

6. Interface do driver

6.1 Entrada de alimentação e das fases do motor

Número do Terminal	Símbolo	Descrição	Cor
1	A+	Fase A+ do motor	Vermelho
2	A-	Fase A+ do motor	Verde
3	B+	Fase A+ do motor	Amarelo
4	B-	Fase A+ do motor	Azul
5	AC1(GND)	Entrada de	VDC 24 ~ 50V
6	AC2(VCC)	alimentação	

6.2 Entrada do Encoder

Número do Terminal	Símbolo	Nome	Descrição (cor do cabo)
1	EB+	Entrada positiva da fase B do encoder	Amarelo
2	EB-	Entrada negativa da fase B do encoder	Verde
3	EA+	Entrada positiva da fase A do encoder	Preto
4	EA-	Entrada negativa da fase A do encoder	Azul
5	VCC	Fonte interna (+5V)	Vermelho
6	GND	Fonte interna (0V)	Branco

Se a alimentação do encoder for conectada errada, pode danificar o driver ou o encoder.

6.3 Pinos da Porta de Controle

Número do Terminal	Símbolo	Descrição	
1	PUL+	Suportam sinal de 5~24VDC.	
2	PUL-		
3	DIR+		
4	DIR-		
5	ENA+		
6	ENA-		
7	PEND+	Quando o motor completa o	
8	PEND-	circuito emitindo um sinal.	
9	ALM+	Quando o motor ou o driver apresentam	
10	ALM-	emitindo um sinal.	

8. Indicação de status e alarme

Prioridade	Ciclo do led (3 segundos de ciclo)	Descrição	Correção/ação
1°	(Verde intermitente)	Driver Habilitado	Pronto para rodar.
2°	(Vermelho intermitente)	Driver Desabilitado	Acionar o "ENA" para habilitar o driver.
2°	(Pisca uma vez)	Sobrecorrente ou curto-circuito nas fases	Verificar a existência de curto entre as fases, e aumentar o valor de corrente de saída(caso já esteja no máximo, aumentar o tempo de aceleração/desaceleração ou reconsiderar dimensionamento).
2°	(Pisca duas vezes)	Sobretensão	Verificar a tensão de entrada (se está dentro do valor permitido pelo driver)
3°	(Pisca sete vezes)	Tolerância de perda de passos	Verificar o parâmetro de tolerância e as rampas de aceleração/desaceleração

9. Seleção dos DIPS

SW1: Sem função.

SW2: Sentido da rotação. ON = CW, OFF = CCW

Passo/Resolução	SW3	SW4	SW5	SW6
Padrão (400)	on	on	on	on
800	off	on	on	on
1600	on	off	on	on
3200	off	off	on	on
6400	on	on	off	on
12800	off	on	off	on
25600	on	off	off	on
51200	off	off	off	on
1000	on	on	on	off
2000	off	on	on	off
4000	on	off	on	off
5000	off	off	on	off
8000	on	on	off	off
10000	off	on	off	off
20000	on	off	off	off
40000	off	off	off	off

A Resolução padrão é de 400 PPR, porém pode ser modificada pelos dips ou via software.

10. Aplicação

Adequado para todos os tipos de equipamentos e instrumentos de automação de pequeno e médio porte, como robôs industriais, máquinas têxteis, máquinas de costura industriais especiais, máquinas de decapagem de fios, máquinas de marcação, dispensadores, máquinas de corte, fotocomposição a laser, plotters, máquinas-ferramentas CNC, máquinas de gravação, equipamentos de montagem automática, etc.

10.1 Perfil de movimento

A curva de movimento trapezoidal é utilizada no controle de motores, caracterizado por curvas de aceleração e desaceleração lineares. Esse perfil cria uma transição suave e controlada entre velocidades, formando um gráfico trapezoidal de velocidade. A curva trapezoidal permite um controle preciso do deslocamento e da velocidade do motor, minimizando oscilações e perdas de passo.

imagem 5 - Gráfico de movimento ideal para motores de passo

Além disso, é importante destacar que a curva de movimento trapezoidal também é aplicada nas inversões do sentido de rotação do motor. Durante as rampas de desaceleração, o campo magnético do rotor comanda o do estator, seguindo o princípio de um gerador. Esse processo resulta em um retorno de energia para a alimentação, conhecido como energia regenerativa.

imagem 6 - inversão no sentido de rotação

10.2 Controle de malha fechada

O controle em malha fechada é um método de controle que utiliza feedback constante do sistema para realizar ajustes e atingir um objetivo desejado. Com base em medições em tempo real e comparação com um valor de referência, um controlador toma decisões e gera sinais de controle para corrigir desvios e manter o sistema em conformidade.

Imagem 7 - Controle de malha fechada

Esse tipo de controle oferece maior precisão, estabilidade e capacidade de adaptação, sendo amplamente utilizado em automação industrial, robótica e outras aplicações que exigem controle preciso e confiável.

11. Instalação de software e configurações de parâmetros

abordaremos o passo a passo da aplicação do software do driver, permitindo a modificação dos ganhos e parâmetros essenciais através da comunicação 232. Você terá controle total sobre as configurações do driver, ajustando-as de forma precisa para otimizar o desempenho dos motores em suas aplicações industriais.

Segue abaixo o passo a passo:

(1). Conecte o HSS860 e o computador através do cabo serial RS232(de sua preferência e que já possua os drivers de comunicação), abra a pasta ESS e clique duas vezes em "ESS ProTuner.exe".

🏧 closed loop motor software (1).rar (faltando somente 12 dias para comprar uma licença)					
Arquivo Comandos Ferramentas Favoritos Opções Ajuda					
Adicionar Extrair Para Testar Visualizar Excluir Localizar Ass	sistente Inform	nações Antiv	írus Comentários P	roteção SFX	
1. rar\ESS - Arquivo RAR, tama	inho descompri	mido 394.520 b	ytes		
Nome	Tamanho	Comprimido	Тіро	Modificado	CRC32
<mark>.</mark>			Pasta de arquivos		
🖻 companyLogo.jpg	15.283	14.339	Arquivo JPG	14/02/2019 03:46	BBF2A8C4
ESS ProTuner.exe.config	144	122	Arquivo CONFIG	14/02/2019 13:31	E6A080CE
ESS ProTuner.pdb	77.312	11.709	Arquivo PDB	08/03/2019 06:47	F89EB75F
ESS ProTuner.vshost.exe	11.600	6.189	Aplicativo	08/03/2019 06:44	50F47453
ESS ProTuner.vshost.exe.config	144	122	Arquivo CONFIG	14/02/2019 13:31	E6A080CE
ESS ProTuner.vshost.exe.manifest	490	285	Arquivo MANIFEST	09/03/2016 02:48	266BB9C6
🔳 ESS ProTuner-En.exe 🔇	49.664	14.125	Aplicativo	09/03/2019 02:05	FD61101E
■ ESS ProTuner-中文.exe	47.616	13.988	Aplicativo	09/03/2019 02:05	41F09789
NModbus4.dll	75.776	28.904	Extensão de aplica	14/02/2019 14:04	47132067
C NModbus4.xml	116.491	10.071	Microsoft Edge HT	14/02/2019 14:04	15578CA2

Imagem 8 - Pasta onde se encontra o software

(2). Selecione o número da porta serial no software e clique em "Open Serial Port" para detectar a porta utilizada (verifique a imagem abaixo).

Imagem 9 - Interface inicial completa do software

(3). Clique em "**Read Parameters**" para ler os parâmetros atuais do driver. Os dados do driver serão mostrados no software conforme a imagem abaixo.

Parameter Settings	of pulses per		
Read parameters	Encoder Resolution	4000	200~20000
Down pass parameters	Tracking error alarm threshold	1000	40~65535
Dominipado parametero	Open-loop holding	44	0~80 uint:100mA
Save parameters	Closed-loop holding	90	0~00
Factory Default	current Rules segmend	50	0 SO UNIC TOOMA
	filtering time	60	0~600 unit:50us
Open monitoring	Enabling level polarity	1	0-When the optocoupler is on, Enabled 1-When the optocoupler is off, Enabled
lotion control	Fault Output Level Polarity	0	0-valid, Optocoupler conduction 1-valid, Optocoupler is not conduction
Fixed length motion	Input Pulse Mode	0	0-PUL/DIR,1-CW/CCW
Continuous motion	Effective edge of pulse	0	0-Rising edge,1-Falling edge
Deceleration stop	Functional Selection of PEND	0	0-In-place output 1-Brake output
Stop immediately	PEND output level polarity	0	0-valid, Optocoupler conduction 1-valid, Optocoupler is not conduction

Imagem 10 - Zoom na parte inferior esquerda para executar o botão "Read Parameters"

(4) Após modificar os parâmetros, enviar estas modificações para o driver através do botão "**Save parameters**", ou clicar na tecla "**Enter**" do teclado logo após digitar o valor na caixa do parâmetro. Conforme imagem abaixo.

Parameter Settings	of pulses per	2000	200 03333
Read parameters	Encoder Resolution	4000	200~20000
Down pass parameters	Tracking error alarm threshold	1000	40~65535
	Open-loop holding current	44	0~80 uint:100mA
Save parameters	Closed-loop holding current	80	0~80 uint:100mA
Factory Default	Pulse command filtering time	60	0~600 unit:50us
Open monitoring	Enabling level polarity	1	0-When the optocoupler is on, Enabled 1-When the optocoupler is off, Enabled
Motion control	Fault Output Level Polarity	0	0-valid, Optocoupler conduction 1-valid, Optocoupler is not conduction
Fixed length motion	Input Pulse Mode	0	0-PUL/DIR,1-CW/CCW
Continuous motion	Effective edge of pulse	0	0-Rising edge, 1-Falling edge
Deceleration stop	Functional Selection of PEND	0	0-In-place output 1-Brake output
Stop immediately	PEND output level polarity	0	0-valid, Optocoupler conduction 1-valid, Optocoupler is not conduction

Imagem 11 - Área para salvar os parâmetros

(5) Para restaurar as configurações de fábrica do driver, basta apenas clicar no botão "**Factory Default**". E para salvar a configuração dos parâmetros setados, "**Save File**".

e o	peration
	Close Serial Port
	Open file
_	Save file

Imagem 12 - Local para salvar os parâmetros em um arquivo

(6) Ao clicar no botão "**Opening monitoring**", abrimos uma nova janela com as características do driver. (Imagem abaixo)

Monitor Parameter			
Position error	319	pluse	Scan Cycle
Speed Feedback	0	rpm	1000 ms
Speed setting	0	rpm	Start Monitor
Current setting	7999	mA	
Busbar voltage	20	v	
Number of pulses per	40000		Close Monitor

Imagem 13 - Monitor de parâmetros em tempo real

(7) Para monitorar os valores de corrente, tensão, velocidade do motor, clique no botão "**Start monitor**", e para fechar clique em "**Close Monitor**"

Monitor				×
Monitor Parameter				
Position error	319	pluse	Scan Cycle	
Speed Feedback	0	rpm	1000	ms
Speed setting	0	rpm	Start Monito	
Current setting	7999	mA	Start Monico	
Busbar voltage	20	V		
Number of pulses per revolution	40000		Close Monito	or

Imagem 14 - Monitor de parâmetros em tempo real

(8) Para o controle da movimentação do motor através do software, nós temos na parte superior direita uma seção separada "**Motion Control**" com as seguintes opções de parâmetros:

Motion control		
Acceleration	6400	0~2^31-1 uint:pulse/s^2 → 1. rampa de aceleração e desaceleração
Deceleration	6400	0~2^31-1 uint:pulse/s^2
Maximum speed	1600	-2^31~2^31-1 uint:pulse/s > 2. Velocidade máxima trapezoidal.
Total Pulse Number of Target Travel	3200	-2^31~2^31-1 uint:pulse 🌩 3. Valor da distância para a movimentação
Position mode	0	0-Increment, 1-Absolutely - 4. Modo de referência para o posicionamento
Absolute position	0	uint:pulse 🔶 5. Posição absoluta atual do motor.
Internal Pulse State	1	1-InternalPulse is completed, 0-Internal Pulse is not completed \rightarrow 6. Sinalização de término de movimento

imagem 15 - Seção de parâmetros de controle de movimento

Notas:

- Parâmetros relacionados às rampas de aceleração/desaceleração, conforme o gráfico de velocidade trapezoidal no capítulo 10, tendo sua unidade em Pulsos / segundo².
- O valor da velocidade máxima que o motor irá atingir durante o percurso do movimento, conforme o gráfico de velocidade trapezoidal no capítulo 10, tendo sua unidade em **Pulsos / segundo.**
- 3. A distância que o motor irá percorrer em pulsos.

- 4. Modo de referência para a movimentação do motor, podendo ser incremental (leva em conta sempre a posição atual do motor, não possui um "zero"). Ou podendo ser absoluto (Leva em consideração a posição zero da circunferência do motor, e os números pulsos são posições fixas).
- 5. Posição atual do motor na referência absoluta, levando em conta a resolução setada. (Funciona apenas no modo de posição absoluto).
- 6. Sinal digital de término de movimento, quando o valor está em "1" quer dizer que o motor terminou o movimento e está esperando o próximo, quando estiver em "0" quer dizer que o motor ainda está terminando o último movimento solicitado.

(9) Na parte inferior esquerda, podemos controlar o movimento do motor configurado nos parâmetros acima:

Imagem 16 - Seção de comando do controle de movimento

Notas:

- Ao clicar no botão "fixed length motion", o motor irá iniciar o movimento fixo com base nos dados parametrizados na seção anterior.
- O botão "Continuous Motion" fará com que o motor inicie um movimento sem referência de posição, apenas de velocidade, tal como um motor DC convencional (o valor de velocidade negativo é utilizado para fazer com que o motor gire no sentido contrário).
- 3. O botão "Deceleration stop" faz com que o motor para o seu movimento atual, independentemente de ser com posição fixa ou de velocidade contínua, com base na rampa de desaceleração pré-setada nos parâmetros de movimentos.
- O botão "Stop immediately" faz com que o motor pare seu movimento com a menor rampa de desaceleração possível, semelhante à uma parada de emergência.

12. Tabela de configuração de parâmetros

No.	Função	Descrição da Função	Alcance de valores	Valor Padrão	Notas
0	Modelo do Driver	Leitura apenas	86,60,57,4 2		Identificação automática
1	Modo de controle de malha	0-Malha aberta 1-Malha fechada	0-1	1	No modo de malha aberta, defina a corrente do motor com o parâmetro 11, o valor da corrente de retenção de malha aberta. No modo de circuito fechado, a corrente é ajustado automaticamente de acordo com a carga.
2	Tipo de motor	Leitura apenas	0-2	0	Leitura apenas
3	Ganho proporcional Kp do loop da corrent e	Leitura apenas	0-1000	300	Leitura apenas
4	Ganho integral Ki do loop da corrente	Leitura apenas			Leitura apenas
5	Ganho proporcional Kp do loop de posição		0-1000	300	Quanto maior o valor, maior o ganho. Porém, se o valor for muito alto, pode causar oscilação exacerbada e ultrapassar o nível controlado.

6	Ganho proporcional Kp do loop de velocidade		0-1000	400	Dependendo da carga utilizada, você pode ajustá-la com este parâmetro para um melhor aproveitamento do motor.
7	Ganho integral Ki do loop de velocidade		0-300	80	Quanto maior o valor, maior o ganho. Porém, se o valor for muito alto, pode causar oscilação exacerbada e ultrapassar o nível controlado.
8	O número de pulsos por revolução correspondente a o arquivo padrão no driver		200-65535	400	Qualquer número de outras subdivisões diferentes das 15 subdivisões fixadas pelos switches.
9	Resolução do encoder	Leitura apenas	200-20000	4000	Leitura apenas
10	Erro de rastreamento do encoder	Tolerância de erro de pulsos recebidos pelo encoder	40-65536	1000	No caso de alguns alarmes de erro de rastreamento, este problema pode ser resolvido aumentando este valor.
11	Corrente de retenção de malha aberta	unidade de 100mA	0-80	45	Valor da corrente destinada à magnetização do eixo.

12	Corrente de retenção de pico de malha fechada	unidade de 100mA	0-80	80	Valor da corrente destinada à magnetização do eixo em pico.
13	Filtro do tempo de resposta do comando de pulso	unidade de 50us	0-600	30	Quanto maior o valor, mais suave o funcionamento do motor e o ruído, mas o tempo de atraso de rastreamento de posição também aumenta.
14	Nível lógico da entrada "Enable"	Leitura apenas	0-1	1	Leitura apenas
15	Nível lógico da saída "Fault"	Leitura apenas	0-1	0	Leitura apenas
16	Modo de entrada de pulso	0-PUL/DIR 1-CW/CCW	0-1	0	PUL/DIR é pulso único CW/CCW pulso duplo
17	Borda efetiva de pulso	0-Borda de subida 1-Borda de descida	0-1	0	
18	Função da saída "PEDN"	0-Bit de término de posição 1-Saída para liberação de freio	0-1	0	O padrão PEND é o sinal de saída na posição. Se é necessário controlar o dispositivo de freio, você pode definir este valor para 1 para controlar a bobina de freio relevante.

19	Polaridade da saída "PEND"	 0 - Quando o sinal PEND é válido, o optoacoplador é ligado em nível lógico alto. 1 - quando o sinal PEND é válido, o optoacoplador é ligado em nível lógico baixo. 	0-1	0	Leitura apenas
20	Aceleração da Word menos significativa (Low 16 bits)	Pulsos/s^2	0~2 ^31-1		Aceleração e desaceleração trapezoidal
21	Aceleração da Word mais significativa (High 16 bits)	Pulsos/s^2	0~2^31-1		Aceleração e desaceleração trapezoidal
22	Desaceleração da Word menos significativa (Low 16 bits)	Pulsos/s^2			Aceleração e desaceleração trapezoidal
23	Desaceleração da Word mais significativa (High 16 bits)	Pulsos/s^2			Aceleração e desaceleração trapezoidal

24	Velocidade mínima 16 bits	Pulsos/s	-2^31~2^3 1-1		A velocidade máxima que o algoritmo trapezoidal de aceleração/desaceleração pode ser alcançado. No modo de operação contínua, números positivos e negativos são usados para determinar a rotação positiva e negativa.
25	Velocidade máxima 16 bits	Pulsos/s			A velocidade máxima que o algoritmo trapezoidal de aceleração/desaceleração pode ser alcançada. No modo de operação contínua, números positivos e negativos são usados para determinar a rotação positiva e negativa.
26	Número total de pulsos para o motor percorrer word menos significativa 16 bits	unidade em Pulsos	-2^31~2^3 1-1	3200	O número total de pulsos contínuos do algoritmo trapezoidal de aceleração/desaceleração. No modo de operação de comprimento fixo(Fixed length), números positivos e negativos são usados para determinar o sentido.

27	Número total de pulsos para o motor percorrer word menos significativa 16 bits	Unidade em Pulsos	-2^31~2^3 1-1	0	O número total de pulsos contínuos do algoritmo trapezoidal de aceleração/desaceleração. No modo de operação de comprimento fixo(Fixed length), números positivos e negativos determinam o sentido.
28	Instrução do controle de movimento	 0- Pulso e direção 1- posição, operação de comprimento fixo 2- velocidade, operação contínua 3- parada por desaceleração ,4- parada imediata) 	0-4	0	
29	Modo Posição	0-Incremental 1-Absoluto	0-1	0	Válido no modo de posição de comprimento fixo.O incremental refere-se à posição atual como referência para cada curso. Modo Absoluto leva o zero da primeira circunferência como referência.
30	Posição absoluta da word menos significativa 16 bits	Pulsos, leitura apenas		0	

31	Posição absoluta da word mais significativa 16 bits	Pulsos, leitura apenas		0	
32	Sinal de pulso interno	 Pulso interno foi enviado pulso interno não foi enviado 	0 - 1	1	Leitura apenas, indicando o status atual do controle de movimento
33	Salvar parâmetros	Escreva o valor "1" e salve os parâmetros na EEPROM	0 -1	0	
34	Restauração de fábrica	Escreva "1" para restaurar aos padrões de fábrica	0 - 1	0	

Padrão do cabo de comunicação: cabo serial RS232 (para computador desktop), o computador portátil precisa ser equipado com uma linha de conversão USB para RS232.

Em caso de dúvidas, entre em contato conosco ou com nosso suporte técnico para especificar o produto ideal para sua aplicação!

Joinville - SC Rua Dona Francisca, 8.300 Sala 14 - CEP 89219-600 Perini Business Park (47) 3435-4464 ((47) 3419-6402 automacao@obr.com.br www.obr.com.br

